In a previous post I showed the performance of several matrix multiplication implementations. As impressive as the JIT compiler is, I had an inkling that the C++/CLI compiler could do better. I compiled the jagged array (type[N][N]) in C# with optimization enabled. Here is the original source
public static TimeSpan Multiply(int N) {
double[][] C = new double[N][];
double[][] A = new double[N][];
double[][] B = new double[N][];
int i, j, k;
for (i = 0; i < N; i++) {
C[i] = new double[N];
B[i] = new double[N];
A[i] = new double[N];
for (j = 0; j < N; j++) {
C[i][j] = 0;
B[i][j] = i*j;
A[i][j] = i*j;
}
}
DateTime now = DateTime.Now;
for (i = 0; i < N; i++) {
for (k = 0; k < N; k++) {
for (j = 0; j < N; j++) {
C[i][j] += A[i][k]*B[k][j];
}
}
}
return DateTime.Now - now;
}
Using Reflector on the dll, the only thing that the compiler does is moves the declaration of k into line 23. I used the C++/CLI plugin for Reflector to get the code into C++. With a little modification we get this code:
static TimeSpan Multiply(int N)
{
int i;
int j;
array<array<double>^>^ C = gcnew array<array<double>^>(N);
array<array<double>^>^ A = gcnew array<array<double>^>(N);
array<array<double>^>^ B = gcnew array<array<double>^>(N);
for (i = 0 ; (i < N); i++)
{
C[i] = gcnew array<double>(N);
B[i] = gcnew array<double>(N);
A[i] = gcnew array<double>(N);
for (j = 0 ; (j < N); j++)
{
C[i][j] = 0;
B[i][j] = (i * j);
A[i][j] = (i * j);
}
}
DateTime now = DateTime::Now;
for (i = 0 ; (i < N); i++)
{
for (int k = 0 ; (k < N); k++)
{
for (j = 0 ; (j < N); j++)
{
C[i][j] = (C[i][j] + (A[i][k] * B[k][j]));
}
}
}
return ((TimeSpan) (DateTime::Now - now));
}
Compiling this code with
/Ox /Ob2 /Oi /Ot /Oy /GL /D "WIN32" /D "NDEBUG" /D "_UNICODE" /D "UNICODE" /FD /EHa /MD /Yu"stdafx.h" /Fp"Release\CppDemo.pch" /Fo"Release\\" /Fd"Release\vc80.pdb" /W3 /nologo /c /Zi /clr /TP /errorReport:prompt /FU "c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.dll"
We get an optimized matrix multiply. Again, reflecting the exe to get the C# code we get our new code which is is quite a bit faster:
public static TimeSpan Multiply(int N) {
double[][] C = new double[N][];
double[][] A = new double[N][];
double[][] B = new double[N][];
int index = 0;
if (0 < N)
{
do
{
C[index] = new double[N];
B[index] = new double[N];
A[index] = new double[N];
int column = 0;
int value = 0;
do
{
C[index][column] = 0;
double num7 = value;
B[index][column] = num7;
A[index][column] = num7;
column++;
value = index + value;
}
while (column < N);
index++;
}
while (index < N);
}
DateTime now = DateTime.Now;
int i = 0;
if (0 < N)
{
do
{
int k = 0;
do
{
int j = 0;
do
{
double[] Ci = C[i];
Ci[j] = (A[i][k] * B[k][j]) + Ci[j];
j++;
}
while (j < N);
k++;
}
while (k < N);
i++;
}
while (i < N);
}
return (TimeSpan) (DateTime.Now - now);
}
This optimized code averages 182 MOPS on my machine compared to the original C# which only achieved 118 MOPS. This is a lot of work, but the speedup is amazing. I will try to put up some IL later to figure out exactly why the last version is so much faster.
No comments:
Post a Comment